212Pb-DLL3 Radio-DARPin shows promising Preclinical Antitumor Efficacy in Small Cell Lung Cancer

Christian Lizak, PhD
SNMMI, June 11th, 2024

Contributing authors: Francesca Malvezzi1, Amal Saidi2, Madlaina Mettier1, Jitka Vojackova1, Remo Schibli1, Stephan Wullschleger1, Yvonne Kaufmann1, Tamar Lekishvili1, Stefanie Riesenberg1, Jacqueline Blunsch1, Liridon Abduli1, Amy Wong2, Tania Stallons2, Christian Reichen1, Aaron Schatzmann2, Amelie Croset1, Anne Goubier1, Julien Torgue2, Daniel Steiner1

1Molecular Partners AG, Zurich-Schlieren, Switzerland
2Orano Med LLC, Plano, TX, USA
Disclosures

• The presented research was funded by Molecular Partners and Orano Med
• All authors are employees of Molecular Partners and Orano Med
• Christian Lizak has ownership of stocks in Molecular Partners
DARPin Therapeutics: Opportunity in Nuclear Oncology?

DARPins in Oncology & Beyond

- Close the gap between small molecules & antibodies
- Broad target range, binders against >60 targets
- 7 clinical-stage compounds, >2500 patients treated

The Challenge for Radiotherapeutic Applications

Imaging of Breast Cancer

1st BioD in Tumor Mouse Model

Unlocking DARPin for Radiotherapeutic Applications

1) Increase Tumor Uptake
2) Reduce Kidney Accumulation

Adopted from Bragina et al., J Nuc Med, 2021
Radio-DARPin Platform Ready to Deliver Product Candidates

Increased Tumor Uptake by half-life extension (HLE)*

Reduced Kidney Accumulation by surface engineering (Stealth DARPin)*

Optimized Biodistribution Properties

Intrinsic DARPin Properties

✓ Small Size (~15 kDa)
 → Deep tumor penetration
 → Short systemic half-life

✓ High Affinity (pM range)
 → Long tumor retention

✓ High Selectivity
 → Low accumulation in other tissues

✓ High Stability
 → Surface Engineering

* Data presented at various scientific conferences, including AACR 2023 (Bosshart et al.), SNMMI 2023 (Lizak et al.), EANM 2023 (Lizak et al.), and others
The first 212Pb-DLL3 Targeted Radiotherapy

Combining distinctive DARPin features with the power of 212Pb for efficacious cancer therapy

SCLC as Indication
- Aggressive cancer with high unmet medical need
 - 2L: mPFS ~3m; 5y OS ~3%\(^1,2\)
 - DLL3 is expressed in >85% of pts\(^3\)

DLL3: A promising Target
- Homogeneous tumor expression, but low expression level in pts
- No expression in healthy tissues
- New treatments with room for improvement: Tarlatamab (AMGEN) for 2L+; ORR ~40%

Diverse set of DARPinns against DLL3
- Good developability
- Specific binding with high affinity

PRODUCT COMPOSITION

- Tunable albumin binding

212Pb for Targeted Alpha Therapy
- Strong cytotoxicity (dsDNA breaks)
- Single alpha decay (limited free daughters)
 - Limited irradiation of healthy tissues
- Relatively short half-life (10.6 h)
 - Fast energy deposition (efficacy)
 - Easier waste management

Co-Development with Orano Med
- The leader for 212Pb & a committed partner
- Reliable & scalable 212Pb production
- Independent production capacities (substantial inventory of purified 232Th)

ASCO: Ph2 clinical data 212Pb-DOTAMTATE (AlphaMedix\(^\text{TM}\)) showed an ORR of 55.6%\(^4\)

1) Treatment of refractory and relapsed small cell lung cancer, UpToDate
2) SEER
3) Rojo et al., Lung Cancer, 2020
4) Strosberg et al., ASCO 2024 presentation
Promising Biodistribution Profile of 212Pb-DLL3 RDT Candidate

- Positive tumor to non-tumor ratio
 - Tumor to kidney ratio of 1.4:1 (AUC)
- Strong and homogenous tumor uptake confirmed by alpha camera
- Elevated blood levels (caused by half-life tuning) are quickly decreasing

MC38-hDLL3 Model with Elevated DLL3 Expression Level

<table>
<thead>
<tr>
<th>Time Point</th>
<th>T : K</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 h</td>
<td>1.4 : 1</td>
</tr>
<tr>
<td>24 h</td>
<td>1.5 : 1</td>
</tr>
<tr>
<td>AUC (< 24 h)</td>
<td>1.4 : 1</td>
</tr>
</tbody>
</table>

Mice xenografted s.c. with hDLL3-MC38 (Biocytogen)
Dose: 10 μCi of 212Pb at 0.01 mg/kg of DLL3 DARPin

other healthy organs with levels ≤ 5%ID/g not shown
Favorable Safety & Potent Efficacy of 212Pb-DLL3 RDT Candidate

Dose Range Finding in wt Mice

- All treatments up to 40 µCi were well tolerated
 - Treatment shows a favorable safety profile suggesting its potential for clinical use

Efficacy in MC38-hDLL3 Model

- Significant and durable inhibition of tumor growth (comparable to benchmark mAB)
 - Treatment shows profound antitumor activity at clinically relevant dose

Mice xenografted s.c. with hDLL3-MC38 (Biocytogen)
Dose: 10 µCi of 212Pb at 0.01 mg/kg of DLL3 DARPin
MP0712: 212Pb-DLL3 Lead Candidate with Attractive BioD Profile

- **MP0712 Lead Candidate** shows encouraging BioD profile with **T:K Ratio >2** in MC38 model
- Similar profile in NCI-H82 model (patient relevant DLL3 expression) with T:K Ratio >1 (data not shown)
Summary – Radio-DARPin Therapy (RDT)

✓ Successful RDT platform optimization for reduced kidney accumulation and increased tumor uptake
✓ **MP0712 selected as Lead Candidate for 212Pb-DLL3 targeted Radio-DARPin Therapy**
✓ IND-enabling activities initiated with Orano Med; FIH clinical data expected in 2025

Outlook:
- Advance **MP0712** and additional pipeline candidates
- Evolve RDT platform
- Progress collaboration projects with Orano Med and Novartis

<table>
<thead>
<tr>
<th>TARGET</th>
<th>RESEARCH</th>
<th>DEV.</th>
<th>RIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLL3</td>
<td>MP0712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target 2*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Several targets in evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The co-development agreement with Orano Med includes up to 3 potential oncology targets including DLL3 (Delta-like ligand 3)
Acknowledgments

Entire Team at Molecular Partners AG

Orano Med Team
Julien Torgue
Amal Saidi
Aaron Schatzmann
Tania Stallons
Amy Wong
Federico Rojas
Thank you for your interest!

Molecular Partners AG
Wagistrasse 14
8952 Zürich-Schlieren
Switzerland
www.molecularpartners.com
T +41 44 755 77 00