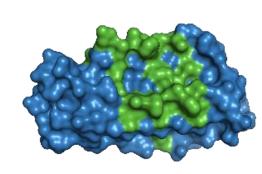
## Abstract 215

# Generation of site-specific DARPin<sup>®</sup> drug conjugates using EGFR as a model system


Laura A. Laviolette<sup>1</sup>, Cynthia J. Guidi<sup>1</sup>, Christian Reichen<sup>2</sup>, Qifeng Qiu<sup>1</sup>, Luke Harris<sup>1</sup>, Patricia Schildknecht<sup>2</sup>, Stefanie Fischer<sup>2</sup>, Zita Arany<sup>2</sup>, Tanja Hospodarsch<sup>2</sup>, Anna Skaletskaya<sup>1</sup>, Megan Fuller<sup>1</sup>, Stephen Abbott<sup>1</sup>, Rebecca McCarthy<sup>1</sup>, Jenny Lee<sup>1</sup>, Katherine Francisco<sup>1</sup>, Kerstin Sinkevicius<sup>1</sup>, Sharlene Adams<sup>1</sup>, Christopher Espelin<sup>1</sup>, Emily Reid<sup>1</sup>, Wei Li<sup>1</sup>, Carla Marashio<sup>1</sup>, Kerry Donahue<sup>1</sup>, Stuart Hicks<sup>1</sup>, and Dan Snell<sup>2</sup> Affiliations: <sup>1</sup>ImmunoGen, Inc, Waltham MA, USA and <sup>2</sup>Molecular Partners AG, Zurich, Switzerland

#### INTRODUCTION

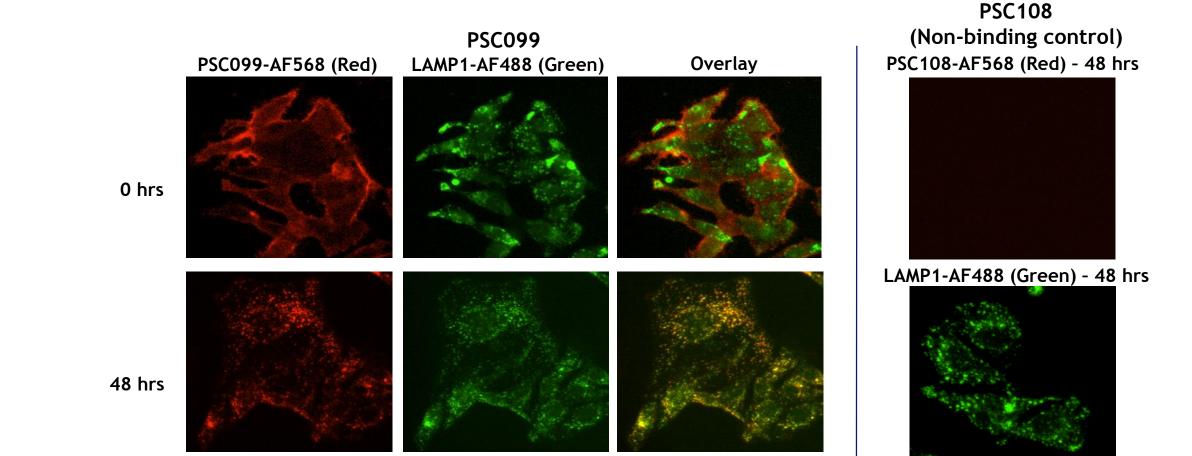
DARPin<sup>®</sup> molecules are small engineered proteins, derived from natural ankyrin repeat proteins, that are selected to bind to specific targets with high affinity. Individual DARPin® molecules can be linked together genetically in order to create multi-specific drug molecules. The versatility of DARPin<sup>®</sup> molecules makes them an attractive alternative to antibodies for the development of drug conjugates. We have developed two DARPin® drug conjugates (DDCs) targeting a known tumor associated antigen, epidermal growth factor receptor (EGFR), as a model system. Two different EGFR DDCs were generated using EGFR-binding DARPin® molecules with different binding affinities. A control DDC using a non-targeting DARPin® molecule was also generated. Each of the multi-DARPin<sup>®</sup> molecules consisted of four DARPin<sup>®</sup> modules, including half-life extension domains, and had a total molecular weight of approximately 60kDa. The multi-DARPin<sup>®</sup> constructs were conjugated to the indolinobenzodiazepine mono-imine DGN549, a potent DNA alkylating payload. DDCs were evaluated for binding and direct cytotoxicity following conjugation. The in vivo stability and efficacy of the DDCs were also evaluated. The modularity of DARPin<sup>®</sup> molecules combined with the potency of the DGN549 payload allows for the production of highly active targeted anti-cancer conjugates.

#### Multi-DARPin<sup>®</sup> constructs utilizing different EGFR binding domains

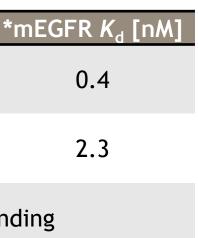
• EGFR-targeting DARPin<sup>®</sup> molecules consisting of four mono-DARPin<sup>®</sup> domains, including serum albumin (SA)binding DARPin<sup>®</sup> domains for half-life extension, were generated. A non-targeting DDC was also generated.



Schematic representation a DARPin® binding domain


| DARPin <sup>®</sup> Molecule         | *hEGFR K <sub>d</sub> [nM] * |                        |
|--------------------------------------|------------------------------|------------------------|
| anti-EGFR DARPin <sup>®</sup> 1      | PSC099                       | 0.02                   |
| anti-EGFR DARPin <sup>®</sup> 2      | PSC106                       | 0.08                   |
| non-binding (NB) DARPin <sup>®</sup> | PSC108                       | Non-bin                |
|                                      | *(                           | PP binding of monovale |

\*SPR binding of monovalent EGFR molecules


• Two different EGFR targeting DARPins<sup>®</sup> (red and blue) were evaluated

#### EGFR-binding DARPin<sup>®</sup> molecules internalize and co-localize with the lysosomal marker Lamp1

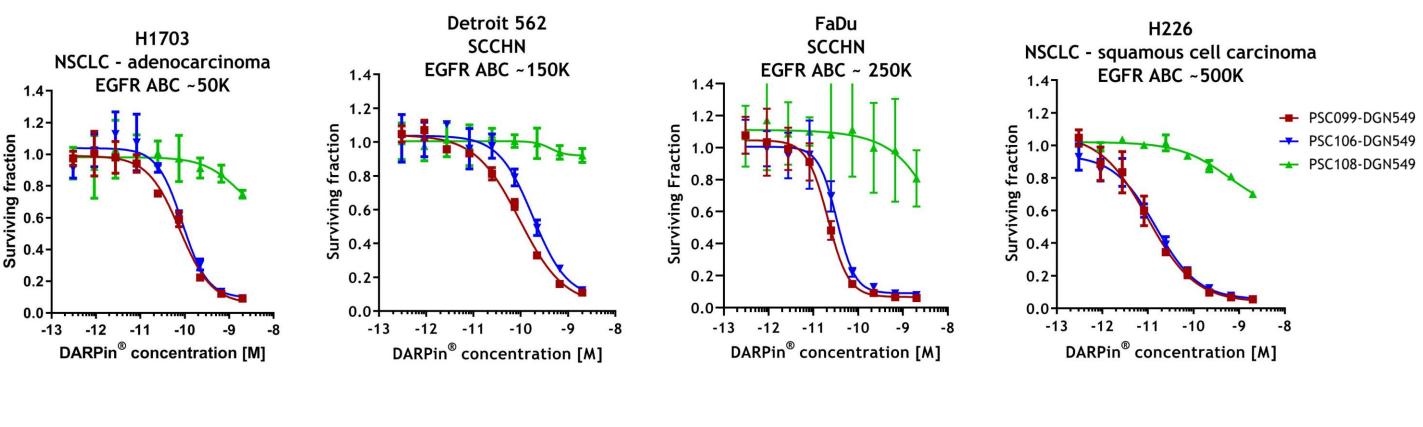
EGFR-binding DARPins<sup>®</sup> bind to EGFR expressing tumor cells, are internalized and delivered to lysosomes • DARPin<sup>®</sup> molecules directly-labelled with AF568 were bound to SKOV3 cells for 1 hr on ice (0 hrs time point) and then incubated at 37°C for 48 hrs. Co-localization with the lysosomal membrane protein, Lamp1, was assessed using an anti-Lamp1 AF488 antibody



AACR Annual Meeting 2019. March 29 - April 3, 2019

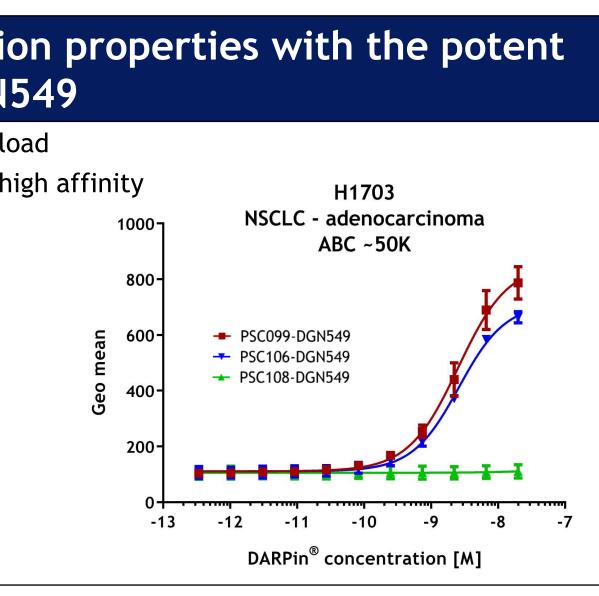


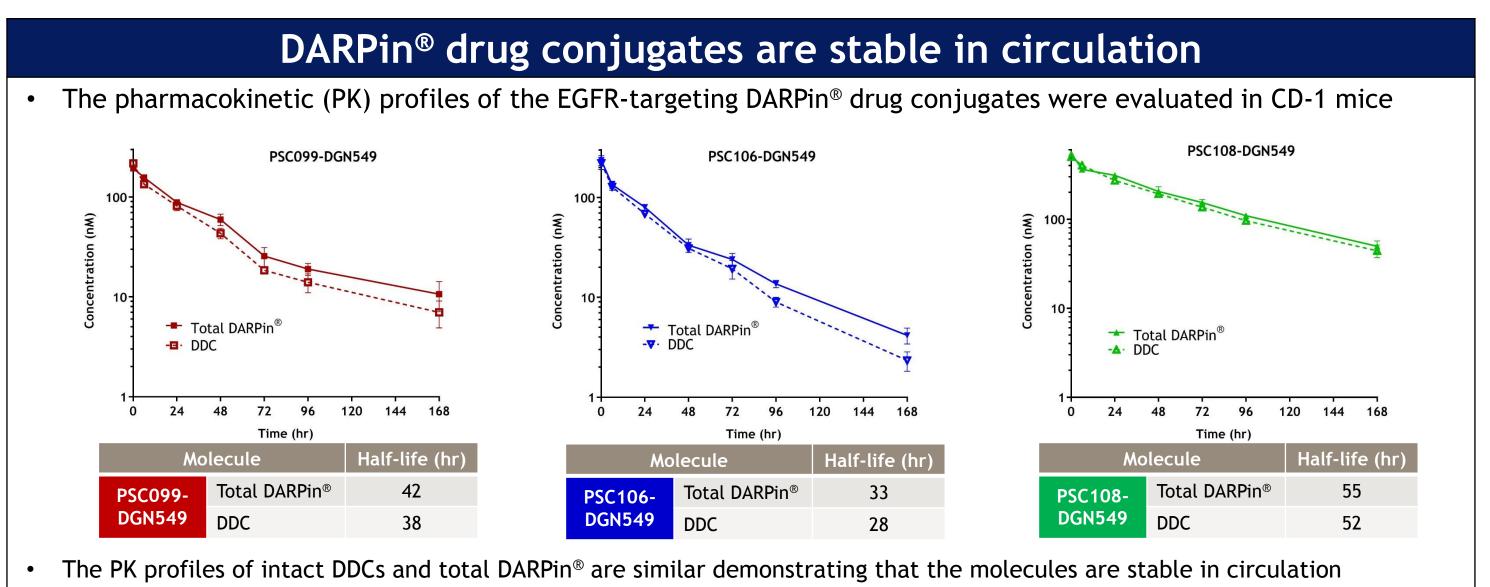
#### DARPin<sup>®</sup> molecules have favorable conjugation properties with the potent DNA alkylator DGN549


- DARPin<sup>®</sup> molecules were successfully conjugated to the DGN549 payload
- DARPin<sup>®</sup> DGN549 conjugates bind to EGFR expressing cell lines with high affinity

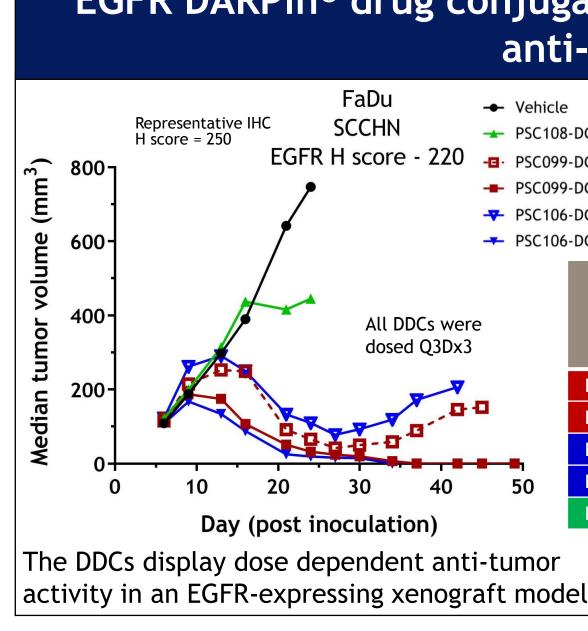
| DDC           | DDR | EC <sub>50</sub> nM | Monomer       | Free drug | Yield |
|---------------|-----|---------------------|---------------|-----------|-------|
| PSC099-DGN549 | 1.5 | 2.5                 | > <b>95</b> % | <1%       | 75%   |
| PSC106-DGN549 | 1.7 | 2.6                 | > <b>95</b> % | <1%       | 70%   |
| PSC108-DGN549 | 2.2 | NA                  | > <b>95</b> % | <1%       | 40%   |

DDR: Drug to DARPin<sup>®</sup> molecule ratio


#### DARPin<sup>®</sup> drug conjugates have potent *in vitro* cytotoxicity against cell lines with a range of EGFR expression


• The *in vitro* potency of the EGFR-targeting DDCs was evaluated in a panel of cell lines expressing EGFR




- The DARPin® DGN549 conjugates displayed pM potency in cell lines ranging in cell surface expression of EGFR from 50K to 500K antibodies bound per cell (ABC)

©2019 ImmunoGen, Inc., Waltham MA, USA and Molecular Partners AG, Zurich, Switzerland





38 hrs, indicating reasonable pharmacokinetic behavior in mice.



### CONCLUSIONS

EGFR DARPin<sup>®</sup> molecules bind to cells with high affinity and are internalized and trafficked to lysosomes DARPin<sup>®</sup> molecules display favorable conjugation properties (yield, % monomer, DDR, free drug) following conjugation to the DNA alkylator DGN549 EGFR DARPin<sup>®</sup>-DGN549 conjugates have potent *in vitro* activity in a panel of cell lines expressing a range of EGFR levels The DARPin<sup>®</sup> drug conjugates are stable in circulation and have high anti-tumor activity in an EGFR expressing xenograft model DARPin® drug conjugates combine the potency of antibody drug conjugates and the modular DARPin® architecture to create designer therapeutics

The non-targeting DDCs showed a terminal half-life of around 50 hrs. Murine cross-reactive EGFR DDCs showed half-lives of 28-

#### EGFR DARPin<sup>®</sup> drug conjugates demonstrate potent and antigen-specific anti-tumor activity in vivo

→ PSC108-DGN549, 10 µg/kg DGN549 -E · PSC099-DGN549, 5 µg/kg DGN549 → PSC106-DGN549, 5 µg/kg DGN549 ➡ PSC106-DGN549, 10 µg/kg DGN549

| Group                 | Dose<br>(Q3Dx3)<br>µg/kg<br>DGN549 | PR* | CR# |  |
|-----------------------|------------------------------------|-----|-----|--|
| PSC099-DGN549         | 5                                  | 5/8 | 0/8 |  |
| PSC099-DGN549         | 10                                 | 8/8 | 8/8 |  |
| PSC106-DGN549         | 5                                  | 3/8 | 2/8 |  |
| PSC106-DGN549         | 10                                 | 8/8 | 8/8 |  |
| PSC108-DGN549         | 10                                 | 0/8 | 0/8 |  |
| <br>*Partial response |                                    |     |     |  |

<sup>#</sup>Complete response

• The DDCs were well tolerated

 No mice lost >20% body weight and all body weight loss recovered over time



