
Effect of MP0317, a FAP x CD40 DARPin, on safety profile and tumor-localized CD40 activation in a phase 1 study in patients with advanced solid tumors

N Steeghs,¹ C Gomez-Roca,² I Korakis,² E Gort,³ H De Winter,⁴ N Stojcheva,⁴ V Stavropoulou,⁴ J Krieg,⁴ P Baverel,⁴ E Fernandez,⁴ A Florescu,⁴ MT Stumpp,⁴ P Legenne,⁴ P Cassier⁵

MP0317 (FAP x CD40 DARPin) scientific rationale

- Local CD40 pathway-dependent immune cell activation in the tumor microenvironment (TME) by binding to fibroblast activation protein (FAP) on cancer-associated fibroblasts (CAFs)
- Circumvent severe toxicities in peripheral organs compared to systemic CD40 activation approaches
- · Suitable for combination with agents relying on antigenpresenting cell (APC) activation and benefiting from TME remodeling (e.g. checkpoint inhibitors)

Study design

- Phase 1, multicenter, open-label, dose-escalation study (NCT05098405)
- Aim to assess safety/tolerability, pharmacokinetics/pharmacodynamics (PK/PD), and preliminary antitumor activity of MP0317 monotherapy in patients with advanced solid tumors
- MP0317 administered intravenously weekly (Q1W) or every 3 weeks (Q3W) in 9 dose cohorts
- Final results are presented (46 patients)

Patient baseline characteristics and cancer types* (N=46)

Age (y), median (range) Female / Male, n (%) ECOG PS 0 / 1 , n (%)	63 (35 –79) 24 (52) / 22 (48) 22 (48) / 24 (52)	Colorectal Pancreatic Mesothelioma NSCLC	12 (27) 9 (20) 6 (13) 4 (9)
Prior regimens, median (range)	4 (1–13)	Breast Endometrial	3 (7) 3 (7)

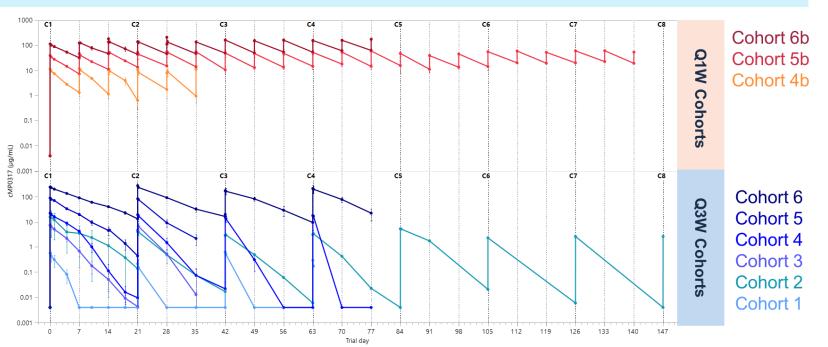
*Additional cancer types: GIST and ovarian in 2 patients (4%) each; cervical, cholangiocarcinoma, SCC of esophagus or anus, bladder in 1 patient (2%) each ECOG, European Cooperative Oncology Group; PS, performance status; GIST, gastrointestinal stromal tumor; NSCLC, non-small cell lung cancer; SCC, squamous cell cancer

MP0317 has a favorable safety profile across all tested doses

- DLT was observed in only one patient treated with MP0317 at the highest planned dose of 10 mg/kg (Q3W regimen; grade 3 AST and ALT increase)
- The most frequently observed adverse reactions were fatigue and IRRs of grade 1–2

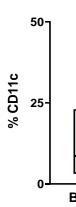
Number of treatment-emergent adverse reactions (no. of patients)										
Cohort no.	1	2	3	4	4b	5	5 b	6	6 b	
MP0317 dose level (mg/kg) and schedule	0.03 Q3W	0.1 Q3W	0.3 Q3W	1.0 Q3W	DL1 Q1W	3.0 Q3W	DL2 Q1W	10 Q3W	DL3 Q1W	Total
No. of patients / cohort	2	2	3	6	4	6	6	8	9	46
Adverse Reactions (ARs)	1 (1)	10 (2)	4 (3)	20 (5)	13 (3)	5 (4)	29 (6)	25 (6)	10 (7)	117 (37)
Grade ≥3 ARs	0 (0)	0 (0)	0 (0)	0 (0)	2 (2)	0 (0)	1 (1)	3 (1)	0 (0)	6 (4)
Most frequent ARs										
Fatigue	0 (0)	1 (1)	0 (0)	2 (2)	1 (1)	1 (1)	5 (5)	4 (2)	3 (3)	17 (15)
IRR	1 (1)	1 (1)	0 (0)	3 (1)	2 (1)	1 (1)	1 (1)	2 (1)	1 (1)	12 (8)
Liver enzyme(s) increased	0 (0)	0 (0)	0 (0)	2 (2)	1 (1)	0 (0)	0 (0)	6 (1)	1 (1)	10 (5)
Nausea	0 (0)	0 (0)	0 (0)	2 (2)	1 (1)	0 (0)	1 (1)	3 (3)	0 (0)	7 (7)
Anorexia	0 (0)	1 (1)	0 (0)	2 (2)	0 (0)	0 (0)	1 (1)	0 (0)	1 (1)	5 (5)
Vomiting	0 (0)	0 (0)	0 (0)	1 (1)	0 (0)	0 (0)	3 (2)	1 (1)	0 (0)	5 (4)
Serious ARs	0 (0)	0 (0)	0 (0)	1* (1)	1** (1)	0 (0)	0 (0)	2*** (1)	1* (1)	5 (4)
*IRR Grade 2 with hospitalization for patient	monitoring. **	Heart failure (Grade 1.			ALT alar	ine aminotrai	nsferase [.] AST	aspartate an	ninotransferase.

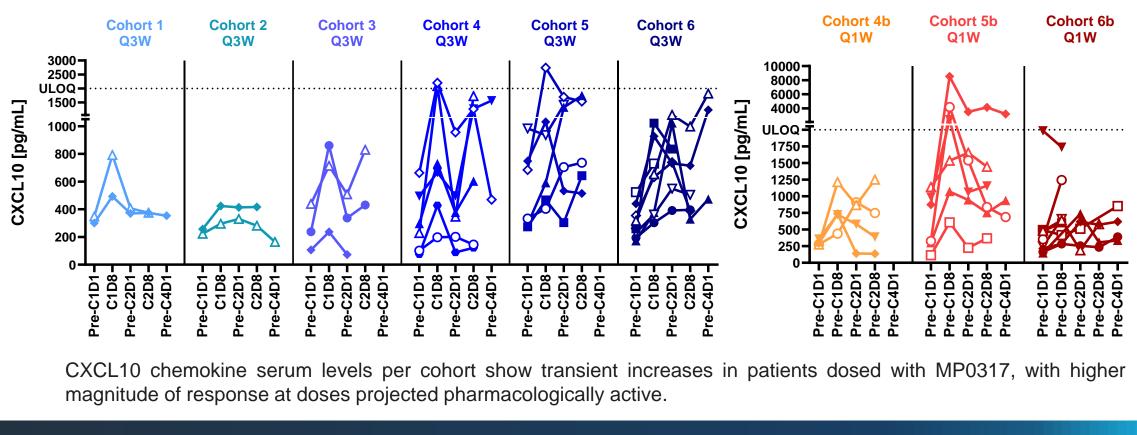
*IRR Grade 2 with hospitalization for patient monitoring; **Heart failure Grade 1; ***Isolated asymptomatic Grade 3 AST and ALT elevations; DLT; upgraded to serious AR by Sponsor. ALT, alanine aminotransferase; AST, aspartate aminotransferase; DLT, dose-limiting toxicity; IRR, infusion-related reaction.


Author affiliations: ¹Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; ²IUCT-Oncopole, Toulouse, France; ³Department of Medical Oncology, UMC Utrecht, Utrecht, The Netherlands; ⁴Molecular Partners AG, Schlieren-Zurich, Switzerland; ⁵Department of Medical Oncology, Centre Léon Bérard, Lyon, France

Main findings & conclusions

- MP0317 has a favorable safety profile in 46 patients at each of the tested dose levels (0.03–10 mg/kg, Q3W & Q1W)
- Serum PK shows MP0317 half-life extended properties and confirms that MP0317 is suited for Q3W and Q1W dosing
- MP0317 shows target occupancy in tumor biopsies and evidence of TME remodeling:
- Increases in plasma cells, T follicular helper cells, dendritic cell (DC) abundance
- IFN_{γ} downstream activation
- DC maturation gene signature score increases
- Increased CXCL10 serum levels corroborate these findings
- Dose-response analysis supports an optimal benefit-risk profile of MP0317 at doses of \geq 1.5 mg/kg, with adjustable dosing frequency to match a combination dosing scheme
- These data support further clinical evaluation of MP0317 in combination with complementary anticancer therapies


MP0317 treatment and patient outcomes


		Cycle 1 Visit Day	Cycle 2 Visit Day	Cycle 3 Visit Day	Cycle 4 Visit Day	Cycle 5 Visit Day	Cycle 6 Visit Day	Cycle 7 Visit Day		C ycle 8 isit Day			
	MP0317 Administrations	1 8 15	1 8 15 1	8 15	1 8 15 1	8 15	1 8 15 1	L 8 15	1	8 15	1		
									Ļ				
Cohort 6b DL3 Q1W	46. SCC anus 45. Mesothelioma 44. Endometrial ca 43. Colorectal ca 42. Bladder ca 41. Mesothelioma 40. NSCLC 39. Pancreatic ca 38. Pancreatic ca												
Cohort 6 10.0 mg/kg Q3W	37. NSCLC 36. Colorectal ca 35. Mesothelioma 34. Pancreatic ca 33. Pancreatic ca 32. SCC esophagus 31. Breast ca 30. NSCLC				•								
Cohort 5b DL2 Q1W	29. Mesothelioma 28. Pancreatic ca 27. Colorectal ca 26. Colorectal ca 25. GIST 24. GIST						† ● ↓ ↓ ●	;;_ ; «	•				
Cohort 5 3.0 mg/kg Q3W	23. Breast ca 22. Colorectal ca 21. Colorectal ca 20. Ovarian ca 19. Colorectal ca 18. Endometrial ca					∧ S ● P	Progressive disease						
Cohort 4b DL1 Q1W	17. NSCLC 16. Pancreatic ca 15. Breast ca 14. Pancreatic ca			•		O V	vithdrawal d atient withd	ue to IRR		lea) -			
Cohort 4 1.0 mg/kg Q3W	13. Pancreatic ca 12. Colorectal ca 11. Pancreatic ca 10. Ovarian ca 9. Cholangioca 8. Endometrial ca				•	t F	nistration ull dose ncomplete de						
Cohort 3 0.3 mg/kg Q3W	7. Colorectal ca 6. Cervical ca 5. Colorectal ca		•			Ų S	kipped dose	9					
Cohort 2 0.1 mg/kg Q3W	4. Colorectal ca 3. Colorectal ca				₽		† 1		† •				
Cohort 1 0.03 mg/kg Q3W	2. Mesothelioma 1. Mesothelioma		•		† •								

MP0317 dose recommendation for potential further clinical development

Q1W, weekly dosing; Q3W, dosing every 3 weeks; ca, carcinoma.

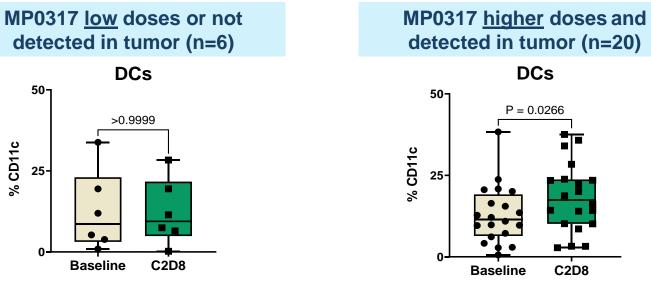
Acknowledgments: We thank the study patients and their families, the study investigators, nurses and clinical personnel **For any questions, please contact:** info@molecularpartners.com / attention of Vaia Stavropoulou

Poster # 2573

2024 ASCO **Annual Meeting**

Copies of this poster obtained through Quick nse (QR) Code are for personal use only and t be reproduced without permission fror ASCO[®] or the authors of this poster

MP0317 serum PK is suitable for Q3W and Q1W dosing


MP0317 serum concentrations (mean ± SEM)

PK profile is consistent with half-life extended properties of DARPins

MP0317 exposure shows dose proportionality throughout the treatment period analysed

Sustained exposure is observed hiaher both regimens ing the target-mediated drug disposition and the impact of anti-drug antibodies

MP0317 tumor-localized CD40 activation and TME modulation

Evaluable tumor biopsies from treated patients were analyzed with multiplex mmuno-fluorescense. ≤0.1mg/kg; ≥0.3mg/kg. doses: (75%), median, and (25%) percentiles indicated. P-values are ranked from paired sum Wilcoxon test.

Bulk RNA sequencing in paired tumor biopsies (n=19)

• MP0317 presence tends to be associated with increase in abundance of plasma and T follicular helper cells, as well as DC maturation gene signature and IFNy downstream activation gene signature scores

CXCL10 serum level increases post MP0317 treatment

• The dose-response analysis considered the totality of the data, including safety, antitumor activity, and PK/PD exploration of biomarkers in the tumor and the periphery

 Doses of MP0317 ≥1.5 mg/kg are anticipated to provide an optimal benefit-risk profile and warrant further investigation in a combination setting at a dose frequency adjustable to the disease, patient population, and required dosing scheme of potential combination regimen