

ASH Investors Meeting

Saturday, 10 December 2022 / 7:30-9:30pm New Orleans, USA

Disclaimer

This presentation is not an offer to sell or a solicitation of offers to purchase or subscribe for shares of Molecular Partners AG, nor shall it or any part of it nor the fact of its distribution form the basis of, or be relied on in connection with, any contract or investment decision. This presentation is not an offering circular within the meaning of Article 652a of the Swiss Code of Obligations, nor is it a listing prospectus as defined in the listing rules of the SIX Swiss Exchange AG or a prospectus under any other applicable laws. Copies of this presentation may not be sent to countries, or distributed in or sent from countries, in which this is barred or prohibited by law. This document is not a prospectus equivalent document and investors should not subscribe for or purchase any securities referred to in this document. This document does not constitute a recommendation regarding the shares.

This presentation contains specific forward-looking statements, beliefs or opinions, including statements with respect to the product pipelines, potential benefits of product candidates and objectives, estimated market sizes and opportunities as well as the milestone potential under existing collaboration agreements, which are based on current beliefs, expectations and projections about future events, e.g. statements including terms like "potential", "believe", "assume", "expect", "forecast", "project", "may", "could", "might", "will" or similar expressions. Such forward-looking statements are subject to known and unknown risks, uncertainties and other factors which may result in a substantial divergence between the actual results, financial situation, development or performance of Molecular Partners AG and investments and those explicitly or implicitly presumed in these statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied by these statements and forecasts. Past performance of Molecular Partners AG cannot be relied on as a guide to future performance. Forward-looking statements speak only as of the date of this presentation and Molecular Partners AG, its directors, officers, employees, agents, counsel and advisers expressly disclaim any obligations or undertaking to release any update of, or revisions to, any forward looking statement in this presentation. No statement in this presentation should be interpreted to mean that earnings per share for the current or future financial periods would necessarily match or exceed historical published earnings per share. As a result, you are cautioned not to place any undue reliance on such forward-looking statements.

Unless stated otherwise the information provided in this presentation are based on company information. This presentation is intended to provide a general overview of Molecular Partners AG's business and does not purport to deal with all aspects and details regarding Molecular Partners AG. Accordingly, neither Molecular Partners AG nor any of its directors, officers, employees, agents, counsel or advisers nor any other person makes any representation or warranty, express or implied, as to, and accordingly no reliance should be placed on, the accuracy or completeness of the information contained in the presentation or of the views given or implied. Neither Molecular Partners AG nor any of its directors, officers, employees, agents, counsel or advisers nor any other person shall have any liability whatsoever for any errors or omissions or any loss howsoever arising, directly or indirectly, from any use of this information or its contents or otherwise arising in connection therewith.

The material contained in this presentation reflects current legislation and the business and financial affairs of Molecular Partners AG which are subject to change and audit.

MOLECULAR PARTNERS TO HOST 64TH ANNUAL ASH MEETING & EXPOSITION RECEPTION

Join us at the Windsor Court Hotel to discuss the details of MP0533, our tetra-specific DARPin candidate for AML.

RECEPTION SPEAKERS:

NICOLAS LEUPIN, M.D.

Chief Medical Officer at Molecular Partners

CARSTEN RIETHER, PH.D.

CLICK HERE TO RSVP

Associate Professor, Principal Investigator and Head of Research at the Department of Medical Oncology, Inselspital, University Hospital and University of Bern

GAIL ROBOZ, M.D.

Professor of Medicine and Director of the Clinical and Translational Leukemia Program at the Weill Medical College of Cornell University

ADRIAN OCHSENBEIN, M.D.

Head of Research Group, Ochsenbein Lab and Chairman, Department of Medical Oncology at the University of Bern

Saturday, December 10th, 2022 | 7:30-9:30 PM CST 300 Gravier St., New Orleans, LA 70130

Our Team

Michael Stumpp, PhD EVP Projects Molecular Partners

Seth Lewis SVP Investor Relations, Communications and Strategy

Anne Goubier, DVM, PhD SVP Biology, Molecular Partners

Philippe Legenne, MD VP Clinical Development & External Scientific Relations

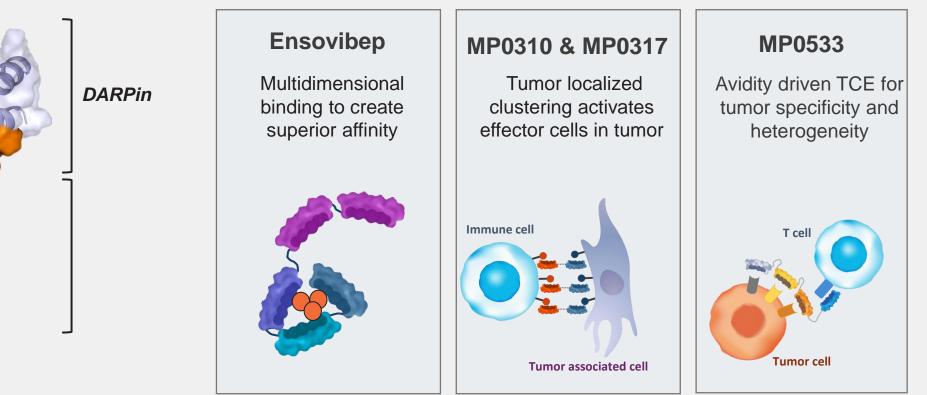
Nicolas Leupin, MD, PhD Chief Medical Officer, Molecular Partners

Agenda

Time	Content	Speaker	Duration
7:30-7:35pm	Intro	Seth Lewis and Nicolas Leupin, MD	05min
7:35-7:40pm	Welcome speakers, some words on MP0533	Nicolas Leupin, MD	05min
7:40-8:15pm	Framing of AML; scene setting; big unmet medical need	Gail Roboz, MD	10min
	Some successful targets in AML;	Adrian Ochsenbein, MD	10min
	Why selecting just one if you can take them all?	Carsten Riether, PhD	10min
	Clinical Plan for MP0533	Nicolas Leupin, MD	05min
8:15-8:40pm	Panel Discussion	all	25min
Followed by	Reception		

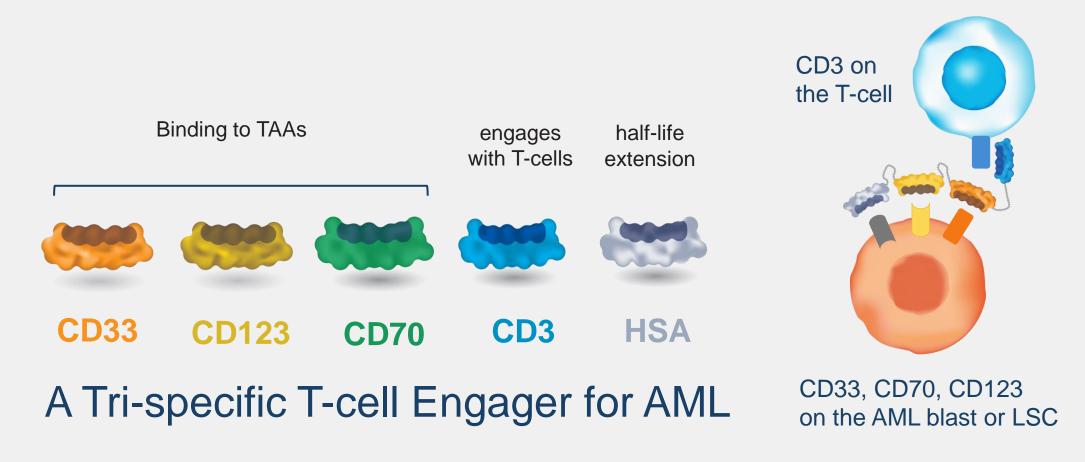
Speakers

- Prof. Dr. Gail Roboz, MD
 - Weill Medical College of Cornell University and the New York
 Presbyterian Hospital in New York City
 - Director of the Clinical and Translational Leukemia Program
- Prof. Dr. Adrian Ochsenbein, MD
 - University Hospital Bern
 - Head Medical Oncology
 - Department for BioMedical Research (DBMR)
- Prof. Dr. Carsten Riether PhD
 - University Hospital Bern
 - Member of Board of Directors of Department for BioMedical Research (DBMR)



DARPins: Multi-specificity-enabled possibilities

DARPins are binding proteins derived from natural ankyrin repeat proteins



Tri-specific T-cell Engager for AML

MP0533

MP0533 – Avidity-driven Selective Killing of LSC in AML

TAA: Tumor associated antigen

MP0533 – Avidity-driven Selective Killing of LSC in AML

- AML remains a deadly disease for most non-transplant eligible patients
- Persistence of Leukemic Stem Cells (LSCs) is the driver of relapse
- Tumor antigens are also expressed on healthy cells, their targeting leading to on-target toxicity
 - **MP0533**: DARPin binding to **CD33**, **CD70**, **CD123** (optimized affinity) and CD3 (T-cell activation)
 - LSC co-express CD33, CD70 and CD123, while healthy cells (HSC) show mostly mono-expression
 - Killing of cells that co-express 2 or more targets, while mono expressing cells are spared
 - MP0533 preferentially kills LSCs opening a therapeutic window
- Preclinical data from *ex-vivo* patient samples **demonstrate preferential killing of LSCs**
- In vivo anti tumor activity demonstrated with limited side effects in mouse model
- FIH clinical site initiation underway. mono-activity expected

DARPin Solution

Reason to believe

Next value

Clinical Problem

Agenda

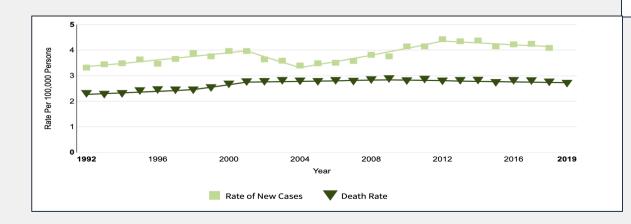
Time	Content	Speaker	Duration
7:30-7:35pm	Intro	Seth Lewis and Nicolas Leupin, MD	05min
7:35-7:40pm	Welcome speakers, intro of MP0533	Nicolas Leupin, MD	05min
7:40-8:15pm	Framing of AML; scene setting; big unmet medical need	Gail Roboz, MD	10min
	Some successful targets in AML;	Adrian Ochsenbein, MD	10min
	Why selecting just one if you can take them all?	Carsten Riether, PhD	10min
	Clinical Plan for MP0533	Nicolas Leupin, MD	05min
8:15-8:40pm	Panel Discussion	all	25min
Followed by	Reception		

A Quick Introduction to Acute Myeloid Leukemia

Gail J. Roboz, M.D.

Professor of Medicine and Director of the Clinical and Translational Leukemia Program at the Weill Medical College of Cornell University

Acute Myeloid Leukemia (AML)


- AML is the most common acute leukemia in adults and is genetically heterogeneous
- An estimated 69,700 people are living with AML in the United States (2019)
- The 5-year relative survival rate is 30.5%
- Estimates for 2022:
 - 20,050 new cases will be diagnosed
 - 11,540 deaths from AML

Cancer Stat Facts: Leukemia — Acute Myeloid Leukemia (AML). Available at: https://seer.cancer.gov/statfacts/html/amyl.html.

SEER 2021 AML Statistics

- Estimated New Cases in 2021: 20,240
- % of All New Cancer Cases: 1.1%
- Estimated Deaths in 2021: 11,400
- % of All Cancer Deaths: 1.9%
- Percent Surviving 5 Years: 29.5% (2011-2017)

w Common Is This Cancer?				
	Common Types of Cancer	Estimated New Cases 2021	Estimated Deaths 2021	Acute myeloid leukemia represents 1.1% of all new cancer cases in the U.S.
1.	Breast Cancer (Female)	281,550	43,600	
2.	Prostate Cancer	248,530	34,130	
3.	Lung and Bronchus Cancer	235,760	131,880	
4.	Colorectal Cancer	149,500	52,980	
5.	Melanoma of the Skin	106,110	7,180	
6.	Bladder Cancer	83,730	17,200	1.1%
7.	Non-Hodgkin Lymphoma	81,560	20,720	1.170
8.	Kidney and Renal Pelvis Cancer	76,080	13,780	
9.	Uterine Cancer	66,570	12,940	
.0.	Leukemia	61,090	23,660	
	-	-	-	
	Acute Myeloid Leukemia	20,240	11,400	

https://seer.cancer.gov/statfacts/html/amyl.html

Risk Factors & Etiologies

Deschler, B., & Lübbert, M. (2006). Acute myeloid leukemia: epidemiology and etiology. *Cancer*, *107*(9), 2099-2107. Leonard JP, Martin P, Roboz GJ. JCO 2017.

Weill Cornell

_ NewYork-

☐ Presbyterian

Genetic disorders

Down syndrome Klinefelter syndrome Patau syndrome Ataxia telangiectasia Shwachman syndrome Kostman syndrome Neurofibromatosis Fanconi anemia Li-Fraumeni syndrome Noonan syndrome **Physical and Chemical Exposures** Benzene **Organic solvents** Pesticides Cigarette smoking ? Herbicides/Agent Orange WTC/9-11 exposure Nontherapeutic, therapeutic radiation Chemotherapy Alkylating agents

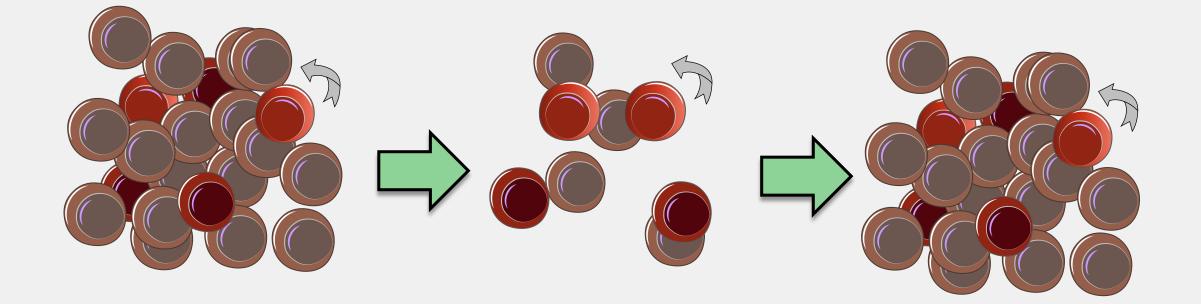
Topoisomerase-II inhibitors Anthracyclines Taxanes Bone marrow failure syndromes Dyskeratosis congenita Fanconi anemia Myeloid neoplasms with germ line predisposition germ line mutations in CEBPA, DDX41, RUNX1, ANKRD26, ETV6, GATA2, SRP72, 14q32.2 genomic duplication (ATG2B/GSKIP)

15

Clinical Presentation

- Minor to life-threatening signs and symptoms
- Present for <3 months in most patients
- Signs/symptoms attributable to bone marrow failure and infiltration of tissues by blasts
- Hepatomegaly, splenomegaly, lymphadenopathy
- Bone pain
- Gingival hyperplasia, oral bleeding
- Leukemia cutis

Current AML Treatment Paradigm


Remission induction: intensive vs. non-intensive

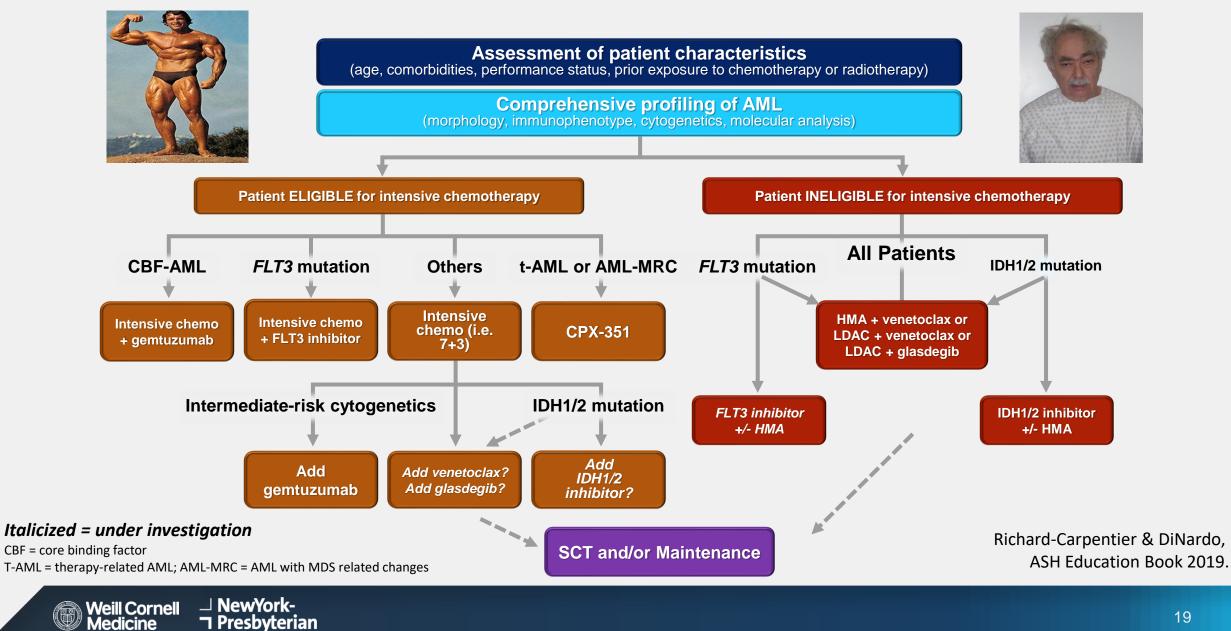
Consolidation

Cycles of chemotherapy Autologous or allogeneic stem cell transplant

Maintenance

Current AML treatments fail to completely eliminate leukemic cells

AML

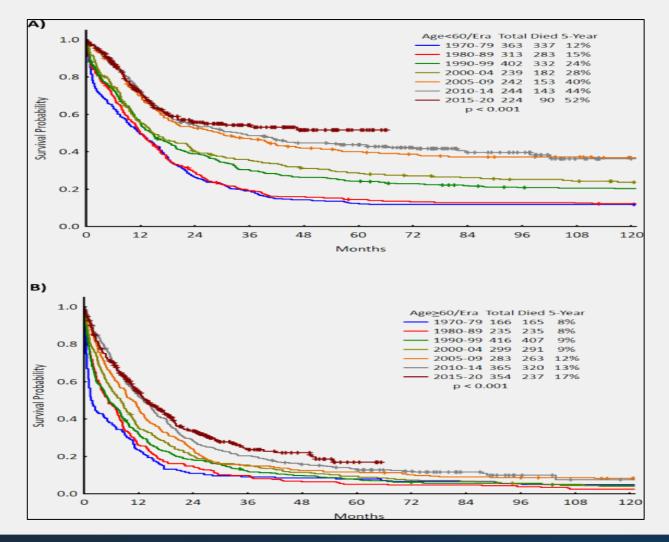

Remission

With measurable residual disease (MRD)

Relapse

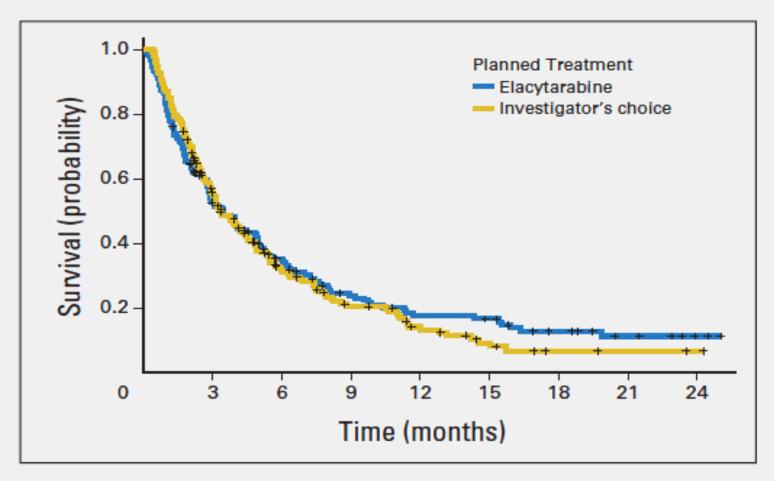
Weill Cornell Medicine T Presbyterian

Evolving diagnostic and treatment paradigm for Newly Diagnosed AML

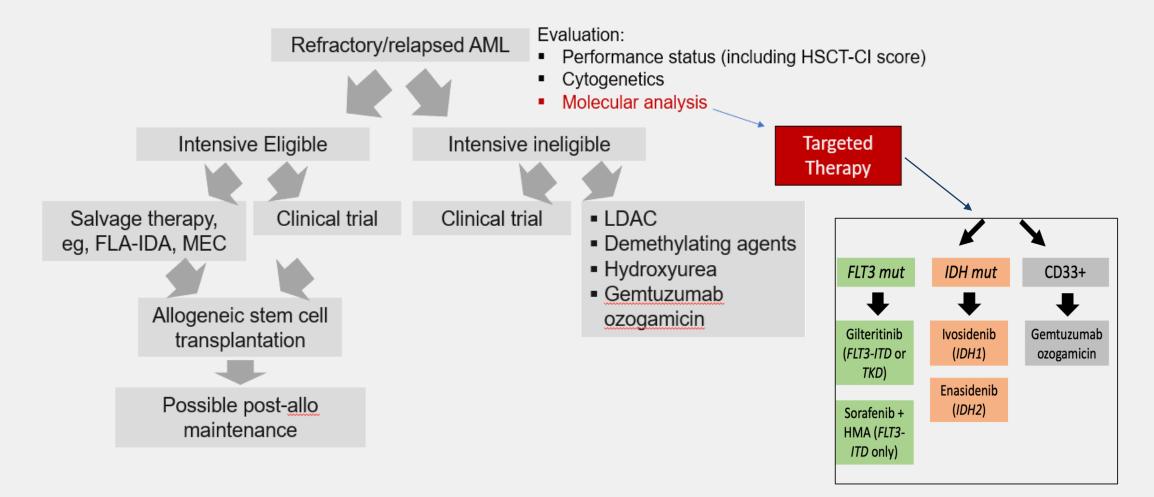

☐ Presbyterian

US and EU Drug Approvals for AML 2017-2020

	Target	Appr	oval
Midostaurin (+IC)	FLT3	ND	
CPX-351	t-AML, AML-MRC	ND	
Enasidenib	IDH2	R/R	
Gemtuzumab ozogamicin (±IC)*	CD33	ND and R/R*	
Ivosidenib	IDH1	ND and R/R	
Glasdegib (+LDAC)	Sonic hedgehog pathway	ND	
Gilteritinib	FLT3	R/R	
Venetoclax (+Aza/Dec/LDAC) ⁺	BCL-2	ND	
CC-486 (oral azacitidine)	Hypermethylation	Maintenance	


Overall Survival of AML over 5 Decades at MD Anderson Cancer Center

Kantarjian HM, et al. Clin Lymphoma Myeloma Leuk 2021; **21:**580–597


Weill Cornell – NewYork-Medicine – Presbyterian

Randomized Trial of Elacytarabine vs. Investigator's Choice in Relapsed/Refractory AML

Roboz GJ et al. J Clin Oncol. 2014;32:1919-1926.

Treatment Algorithm for Relapsed/Refractory Acute Myeloid Leukemia

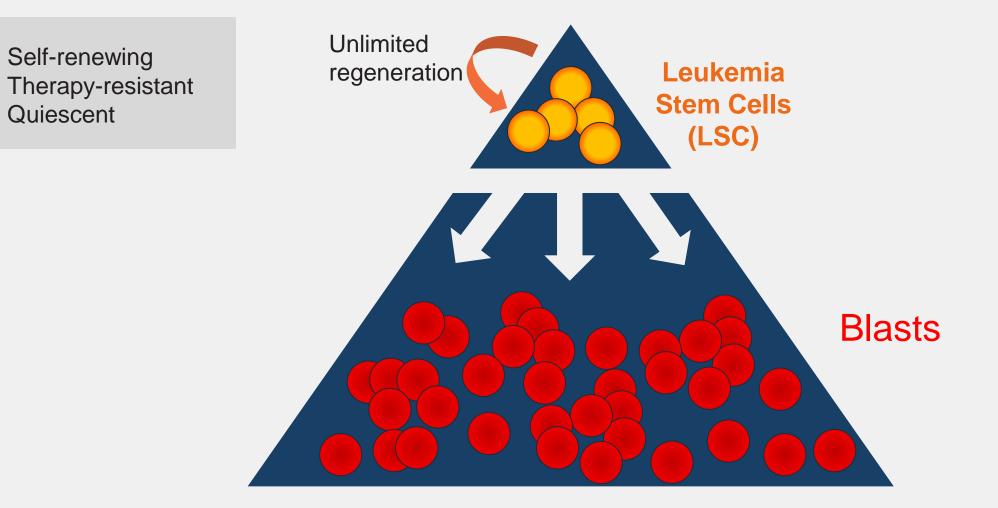
Weill Cornell – NewYork-Medicine – Presbyterian

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

Selected Targeted Approaches in AML

Adrian Ochsenbein, M.D.

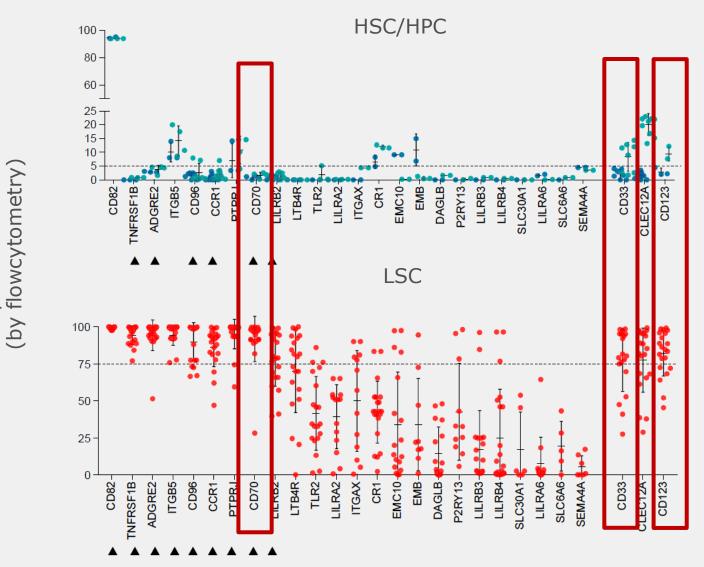
Head and Chairman


Department of Medical Oncology Inselspital, University Hospital and University of Bern

WINSELSPITAL

HOPITAL UNIVERSITAIRE DE BERNI BERN UNIVERSITY HOSPITAL

Potential new targets for the treatment of AML patients.


WINSELSPITAL b universität BERN \Box

HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

•

•

Identification of leukemia stem cell-specific surface proteins in AML

Perna et al. Cancer Cell 2017; 32, 506-519

 $u^{^{b}}$ universität Bern WINSELSPITAL UNIVERSITATSSPITAL BERN HOPITAL UNIVERSITATE DE BERNE BERN UNIVERSITY HOSPITAL

Expression in %

Identification of leukemia stem cell-specific surface proteins in AML

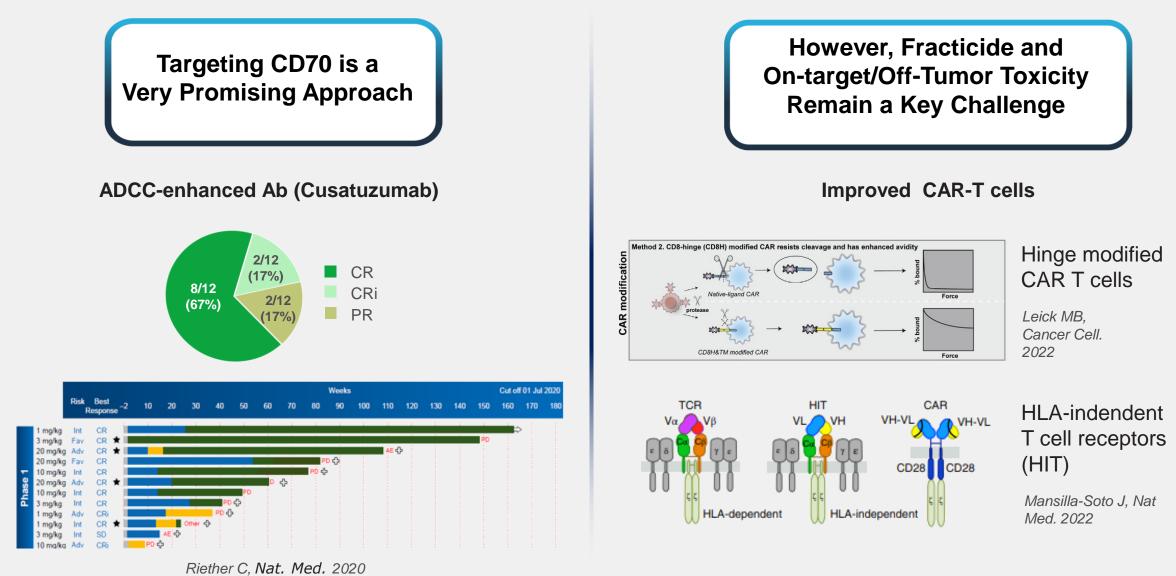
UNIVERSITÄT BERN ^(M)INSELSPITAL UNIVERSITÄTSPITAL BERN HOPITAL UNIVERSITÄTSPITAL BERN UNIVERSITÄT HOPITAL

27

Targeting CD70 in Non-AML Indications

Year Initiated	Drug	Indication	Efficacy	Phase of Development
2009	MDX-1203	RCC/NHL	69% SD (n=26)	Phase 1: (Completed: Nov. 2012, Development stopped)
2009	SGN-75	CD70 +NHL/RCC	2% CR, 3% PR, 35% SD (n=58)	Phase 1: (Completed: Nov. 2011, Development stopped)
2012	AMG-172	RCC	5% PR, 16% SD (n=37)	Phase 1: (Completed: Nov. 2012, Development stopped)
2013	Cusatuzumab	CD70+Neoplasms	Dose escalation: 54% SD (n=26) CTCL cohort expansion: 4% CR, 19% PR, 35% SD (n=26)	Phase 1/2 (Completed: Jul. 2020)
2014	SGN-CD70A	CD70+ NHL/RCC	RCC: 6% PR, 72% SD (n=18) NHL: 5% CR, 15% PR, 30% SD (n=20)	Phase 1: (Completed Feb. 2017, Development stopped)
2015	Cusatuzumab	Advanced NPC	Evaluable patients: 29% SD (n=7)	Phase 1: (Completed: Apr. 2018)
2017	Anti-human CD70	CD70+ Neoplasms	-	Phase 1/2: (Trial suspended, Exp. completion: Jan. 2027)
2017	4SCAR70	B-cell malignancies	-	Phase 1/2: (Recruiting, Completed: Jul. 2019)
2020	4SCAR70	BCL	-	Phase 1/2: (Recruiting, Exp. Completion: Jul. 2023)
2020	CTX130	RCC	-	Phase 1: (Recruiting, Exp. Completion: Feb. 2027)
2020	CTX130	TCL	-	Phase 1: (Recruiting, Exp. Completion: Mar. 2027)
2021	ALLO 316	RCC	-	Phase 1: (Active, not recruiting, Exp. Completion: Dec. 2022)

Flieswasser T, J Exp Clin Cancer Res 2022


Targeting CD70 for AML

Year Initiated	Drug	Indication	Efficacy	Phase of Development
2016	Cusatuzumab	AML/MDS	67% CR, 83% CR+Cri (n=12)	Phase 1/2: (Active, not recruiting. Exp. completion: Apr. 2022)
2019	Cusatuzumab	AML	27% CR, 40% CR+Cri (n=52)	Phase 2: (Active, not recruiting, Exp, completion: Dec. 2022)
2019	Cusatuzumab	AML	45.5%, CR, 77% CR+Cri (n=44)	Phase 1: (Active, not recruiting, Exp, completion: Nov. 2021)
2020	Cusatuzumab	AML	-	Phase 1: (Completed: Jul. 2021)
2020	SEA-CD70	MDS/AML	-	Phase 1: (Recruiting, Exp. Completion: Aug. 2023)
2021	CD70 CAR	AML, NHL, MM	-	Phase 1: (Recruiting, Exp. Completion: Jan. 2024)

Flieswasser T, J Exp Clin Cancer Res 2022

Targeting CD70

 $u^{^{b}}$ universität $^{^{W}}$ bern

WINSELSPITAL UNIVERSITATSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

Targeting CD123

Challenge: On-Target, Off-Tumor Toxicity"

Expression:

- On blasts and LSCs > 90% of patients"

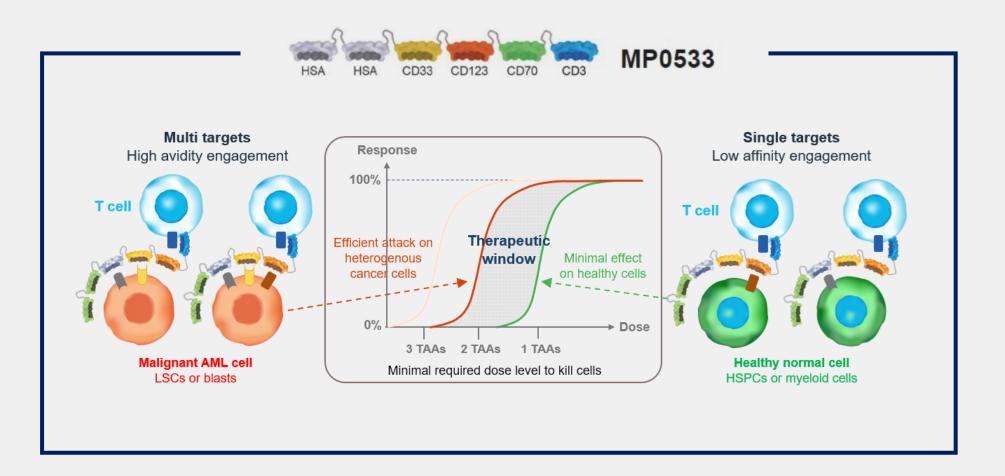
- On virtually all healthy myeloid and progenitor cells, megakaryocytes, B cell subsets as well as endothelial cells.

Drug	Composition and mode of action	Phase of Development
Tagraxofusp (formerly SL-401, DT388IL3)	Diphtheria toxin/IL-3 fusion protein	Phase 1/2
Talacotuzumab (formerly CSL362)	Anti-CD123 mAb	Phase 2/3
KHK2823	Humanized anti-CD123 mAb	Phase 1
IMGN632	CD123-targeted ADC	Phase 1/2
SGN-CD123A	CD123-targeted ADC	Phase 1
Flotetuzumab (formerly MGD006)	Anti-CD123 and -CD3 bispecific mAb	Phase 1/2
APVO436	CD123 and CD3ε bispecific antibody	Phase 1
JNJ-63709178	Humanized anti-CD123 and anti-CD3 bispecific antibody	Phase 1
XmAb14045 antibody with XmAb® Fc domain	Anti-CD123 and anti-CD3 bispecific mAb	Phase 1
CD123-targeted CAR T cells	T cells expressing CD123-specific CAR	Phase 1/2 studies

WINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

Targeting CD33

Challenge:	Drug	Composition and Mechanism of Action	Phase of Development
On-Target, Off-Tumor Toxicity"	Gemtuzumab ozogamicin	ADC-hP67.6 linked via the AcBut linker to a calicheamicin derivative	FDA approved VOD black box warning; currently in development in combination
Expression:	IMGN77961	ADC-Z4618A linked via sulfo-SPD to indolinobenzodiazeprine pseudodimers	Phase I completed enrolling
- On blasts and LSCs	BI 836858	ADCC - FcyRilla	Phase 1/2 completed enrolling
> 90% of patients"	Lintuzumab-Ac225	Radioisotope conjugate-HuM195 linked to Ac225	Phase 1/2 completed enrolling
 On virtually all healthy myeloid and 	JNJ-67371244	CD33/CD3 BITE	Phase I currently enrolling
progenitor cells, megakaryocytes, B	AMG 330	CD33/CD3 BITE	Phase I currently enrolling
cell subsets as well as endothelial cells.	AMV564	CD33/CD3 Tandem Diabodies	Phase I not currently enrolling
	161533 TriKE	Trispecific killer engager	Phase 1/2 completed enrolling
	CD33 CAR-T	CD33-specific T cells	Phase 1/2 completed enrolling
	Vadastuximab talirine	ADC-h2H12ec linked to a pyrrolobenzodiazepine dimer via maleimidocaproyl-valine-alanine druglinker	Terminated development
	AVE9633	ADC-huMy9 linked to maytansinoid derivative via a disulfide bond	Terminated development
	Lintuzumab	ADCC - HuM195	Terminated development


ADC, antibody-drug conjugate; ADCC, antibody-directed cellular cytotoxicity;

BiTE, bispecific T-cell engager; TriKE, trispecific killer engager; VOD, veno-occlusive disease.

b universität U BERN

> **WINSEL**SPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

Targeting CD33/CD123/CD70 in AML

will be presented at ASH 2022

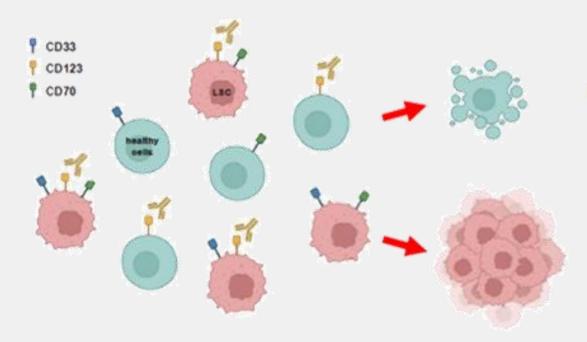
UNIVERSITÄT BERN ^MINSELSPITAL UNIVERSITATSPITAL BERN BERN ^MINSELSPITAL UNIVERSITATSPITAL

33

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

Why selecting just one if you can take them all?

Carsten Riether, PhD


Professor

Head of Research at the Department of Medical Oncology,

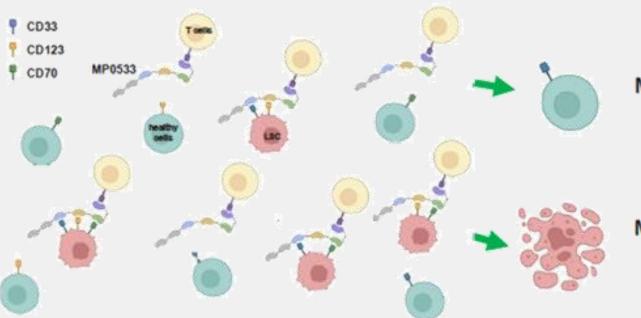
Inselspital, University Hospital and University of Bern

 $u^{^{b}}$ universität Bern

Heterogenous expression of target antigens on LSCs in AML: Current Problem

Mono-targeting agents also kill healthy cells

→ Adverse Events, DLT


Mono-targeting agents do not kill all LSCs

→ Recurrence of disease

 $u^{^{b}}$ universität bern

WINSELSPITAL UNIVERSITATSSPITAL BERN HOPITAL UNIVERSITATE DE BERNE BERN UNIVERSITAT

Heterogenous expression of target antigens on LSCs in AML: Proposed Solution

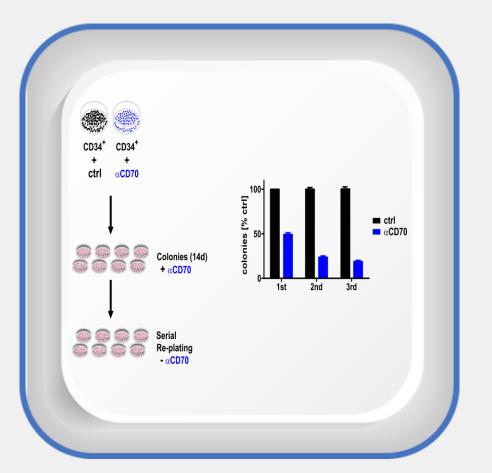
MP0533 does not kill healthy cells → Therapeutic Window

MP0533 kills all LSCs despite Ag heterogeneity

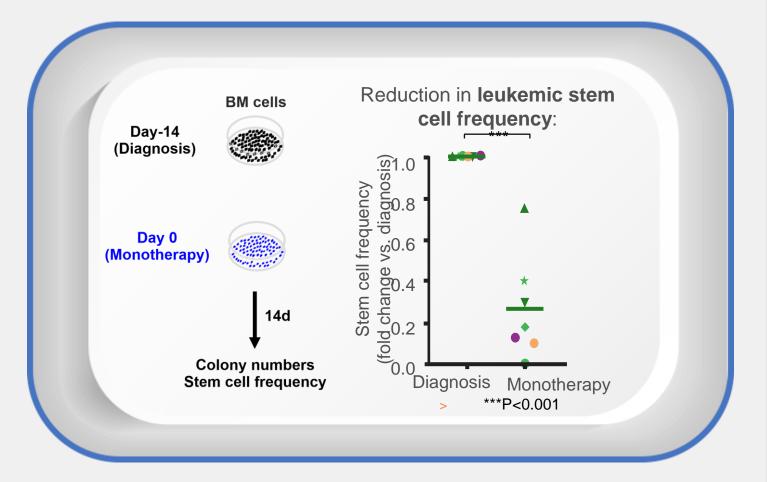
→ Long term disease control

•

- High avidity engagement when 2-3 target antigens are coexpressed
- Low avidity engagment when only 1 antigen is expressed



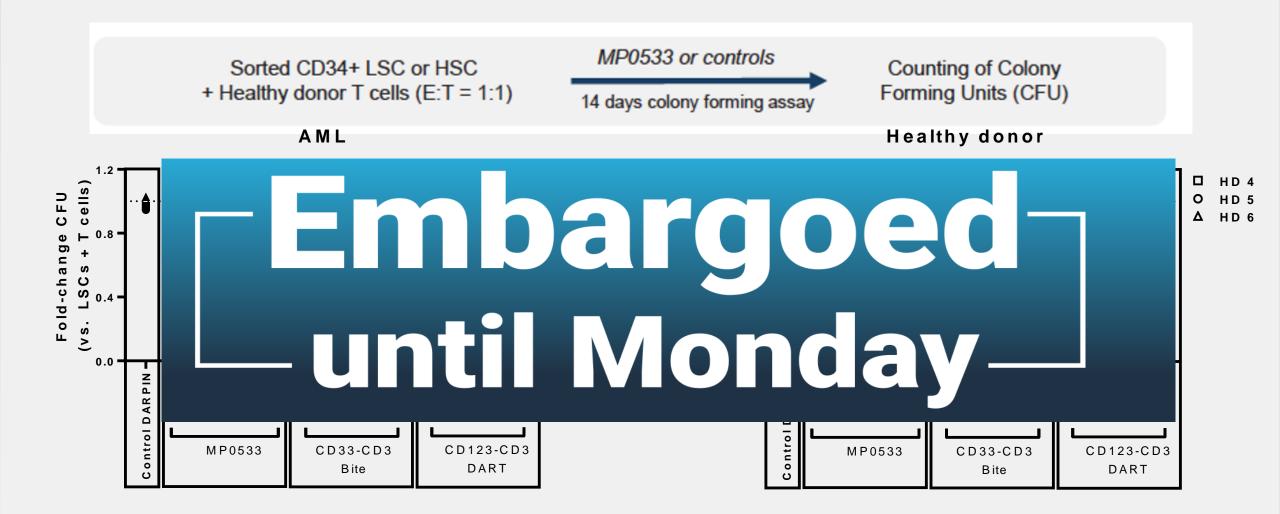
How Can We Study the Effect of a Treatment on LSCs?



Blockade of CD70/CD27 signalling reduces Stem Cell Frequency

UNIVERSITÄTSSPITAL BERN

HOPITAL UNIVERSITAIRE DE BERNE



Riether et al. J Exp Med; 214, 359-380

Riether et al. Nat Med 2020; 26, 1459 - 1467

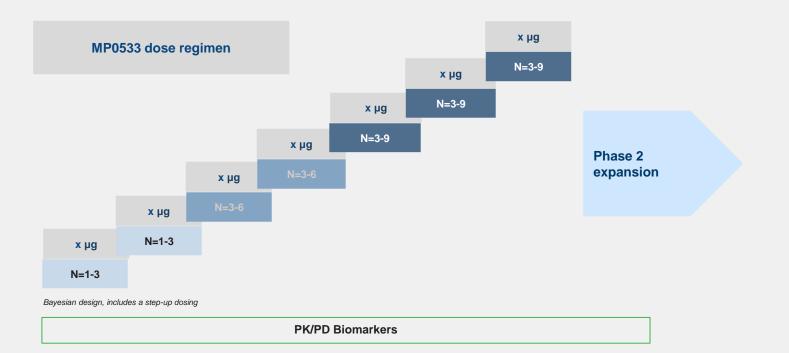
WINSELSPITAL b universität BERN BERN UNIVERSITY HOSPITAL

MP0533 reduces colony formation of AML LSCs

CONFIDENTIAL

Agenda

Time	Content	Speaker	Duration
7:30-7:35pm	Intro	Seth Lewis and Nicolas Leupin	05min
7:35-7:40pm	Welcome speakers, intro of MP0533	Nicolas Leupin	05min
7:40-8:15pm	Framing of AML; scene setting; big unmet medical need	Gail Roboz MD	10min
	Some successful targets in AML;	Adrian Ochsenbein MD	10min
	Why selecting just one if you can take them all?	Carsten Riether PhD	10min
	Clinical Plan for MP0533	Nicolas Leupin	05min
8:15-8:40pm	Panel Discussion	all	25min
Followed by	Reception		

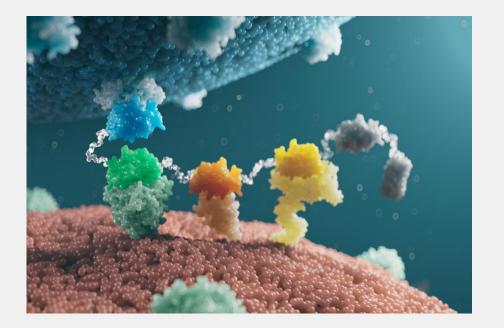

Phase I Dose Escalation Trial in R/R AML patients

Patient population: AML or MDS/AML relapsed/refractory to HMA, induction CT or allogenic HSCT N= 20-45 patients

Endpoints:

DLTs, Safety, Tolerability
Efficacy, effect on LSCs, PK, T-cell Activation, Cytokine Release

Centers: 5 sites at initiation (Switzerland/ The Netherlands)


Site initiations ongoing

Abbreviations: CT = chemotherapy; DLT = Dose limiting toxicity; HMA = hypomethylating agent; HSCT = human stem cell transplantation; N = number of patients

MP0533: a Unique DARPin Solution for AML Patients

- Ensure long term control of the disease by eliminating LSCs
- Control tumor heterogeneity by targeting multiple Ag
- Increase the therapeutic window: optimal dose levels for efficacy with limited side effect
 - Limited killing of healthy HSCs
 - Reduced CRS

Phase 1, open-label, multicenter dose-escalation study in patients with relapsed/refractory AML and higher-risk MDS- **Sites opening next week!**

Oral Presentation at ASH on Monday

Session Date	Monday, December 12, 2022
Session Time	4:30 PM - 6:00 PM
Session Name	Molecular Pharmacology and Drug Resistance: Myeloid Neoplasms: Immune Signaling and Antibody-therapeutic Targeting in Myeloid Neoplasms
Room	Ernest N. Morial Convention Center, 353-355
Presentation Time	5:45 PM
Speaker	Anne Goubier
Title	MP0533: A Multispecific Darpin CD3 Engager Targeting CD33, CD123, and CD70 for the Treatment of AML and MDS Designed to Selectively Target Leukemic Stem Cells

Do not forget!

MOLECULAR PARTNERS TO HOST 64TH ANNUAL ASH MEETING & EXPOSITION RECEPTION

Join us at the Windsor Court Hotel to discuss the details of MP0533, our tetra-specific DARPin candidate for AML.

RECEPTION SPEAKERS:

NICOLAS LEUPIN, M.D.

Chief Medical Officer at Molecular Partners

CARSTEN RIETHER, PH.D.

CLICK HERE TO RSVP

Associate Professor, Principal Investigator and Head of Research at the Department of Medical Oncology, Inselspital, University Hospital and University of Bern

GAIL ROBOZ, M.D.

Professor of Medicine and Director of the Clinical and Translational Leukemia Program at the Weill Medical College of Cornell University

ADRIAN OCHSENBEIN, M.D.

Head of Research Group, Ochsenbein Lab and Chairman, Department of Medical Oncology at the University of Bern

Saturday, December 10th, 2022 | 7:30-9:30 PM CST 300 Gravier St., New Orleans, LA 70130